Русский

Tag Archive for Mazur

Int. J. Nanomedicine, 2018, 1471-1482

M. Shevtsov, B. Nikolaev, Y. Marchenko, L. Yakovleva, N.V. Skvorzov, A. Mazur, P. Tolstoy, V. Ryzhov, G. Multhoff

“Targeting experimental orthotopic glioblastoma with chitosan-based superparamagnetic iron oxide nanoparticles (CS-DX-SPIONs)”

Int. J. Nanomedicine, 2018, 13, 1471-1482
DOI: 10.2147/IJN.S152461

 

Glioblastoma is the most devastating primary brain tumor of the central nervous system in adults. Magnetic nanocarriers may help not only for a targeted delivery of chemotherapeutic agents into the tumor site but also provide contrast enhancing properties for diagnostics using magnetic resonance imaging (MRI)

ACS Biomater. Sci. Eng, 2018, 491-501

M. Promzeleva, T.V. Volkova, A.N. Proshin, O.I. Siluykov, A. Mazur, P.M. Tolstoy, S.P. Ivanov, F. Kamilov, I.V. Terekhova

“Improved biopharmaceutical properties of oral formulations of 1,2,4-thiadiazole derivative with cyclodextrins: in vitro and in vivo evaluation”

ACS Biomater. Sci. Eng, 2018, 4(2), 491-501
DOI: 10.1021/acsbiomaterials.7b00887

source: https://pubs.acs.org/doi/10.1021/acsbiomaterials.7b00887

The synthesized 1,2,4-thiadiazole derivative displaying biological activity has low aqueous solubility and dissolution rate. Novel oral formulations of thiadiazole with β- and hydroxypropyl-β-cyclodextrins were obtained by grinding and freeze-drying methods with the purpose to improve the aqueous solubility. Complex formation of 1,2,4-thiadiazole derivative with cyclodextrins was confirmed by means of solid-state 13C MAS CP/TOSS NMR. Solubility, dissolution rate and permeability of the solid inclusion complexes were evaluated in different biorelevant media (SGF, FaSSGF, FaSSIF) simulating the conditions in the gastrointestinal tract. It was demonstrated that the content of biorelevant media affects the properties of the inclusion complexes. In particular, solubilizing effect of cyclodextrins became less pronounced when the micelles of taurocholic acid and lecithin are formed in the dissolution media. The inclusion of thiadiazole into cyclodextrin cavity is in competition with its partitioning into the micelles and this should be taken into account when the in vivo behavior is predicted. The results of in vitro and in vivo experiments were found to be in agreement and showed the highest solubility, dissolution rate and bioavailability of the freeze-dried complexes of thiadiazole with hydroxypropyl-β-cyclodextrin. These complexes can be proposed as more effective dosage forms for oral administration.

J Therm Anal Calorim, 2017

M. Brusnikina, O. Silyukov, M. Chislov, T. Volkova, A. Proshin, A. Mazur, P. Tolstoy, I. Terekhova

“Effect of cyclodextrin complexation on solubility of novel anti-Alzheimer 1,2,4-thiadiazole derivative”

J Therm Anal Calorim, 2017
DOI: 10.1007/s10973-017-6252-1

source: https://link.springer.com/journal/10973

New 1,2,4-thiadiazole derivative displaying neuroprotective potential and high activity in the treatment of Alzheimer’s disease has been synthesized. The objective of this study was to improve the aqueous solubility of this drug-like compound by means of complex formation with native and hydroxypropylated β-cyclodextrins. To this end, aqueous solubility of 1,2,4-thiadiazole derivative was investigated in the presence of β-cyclodextrins. It was shown that the phase solubility diagrams are of Bs type demonstrating the initial increase in thiadiazole solubility in solutions of cyclodextrins (concentration up to 0.01 mol kg−1) followed by a solubility decrease due to the precipitation of the complexes formed. In comparison with β-cyclodextrin, hydroxypropyl-β-cyclodextrin displays more pronounced solubilizing action since it forms more stable complexes with thiadiazole. Solid complexes of 1,2,4-thiadiazole derivative with β-cyclodextrins were prepared by grinding and freeze-drying methods. DSC, TG, hot-stage microscopy, solid-state 13C MAS CP/TOSS NMR, powder X-ray diffractometry and FTIR spectroscopy were used to prove the existence of complexes in the solid state. Solubility of the obtained formulations was also examined. It was found that complexes of thiadiazole with hydroxypropyl-β-cyclodextrin exhibited higher solubility in phosphate buffer (pH 7.4) compared with pure thiadiazole and its complexes with β-cyclodextrin.

Applied Catalysis: A, 2017, 542, 350-358

P.Mäki-Arvela, J.Zhu, N.Kumar, K. Eränen, A.Aho, J.Linden, J.Salonen, M.Peurla, A.Mazur, V.Matveev, D.Y.Murzin

“Solvent-free “green” amidation of stearic acid for synthesis of biologically active alkylamides over iron supported heterogeneous catalysts”

Applied Catalysis: A, 2017, 542, 350-358
DOI: 10.1016/j.apcata.2017.06.006

Stearoyl ethanolamine was synthesized by amidation of stearic acid with ethanolamine in solventless conditions. Iron containing heterogeneous catalysts supported on SiO2, Al2O3, Beta (BEA), ZSM-12 (MTW) and Ferrierite (FER) were used in this work. Sn-modified Ferrierite and H-Ferrierite were also studied for comparison. Fe-modified catalysts synthesized using solid state ion-exchange and evaporation impregnation methods, were thoroughly characterized with X-ray powder diffraction, scanning electron microscope, FTIR with pyridine, nitrogen adsorption, energy dispersive X-ray microanalysis and Mössbauer spectroscopy. The highest conversion was obtained with Fe-H-FER-20 at 140 °C in 1 h giving 61% conversion and 98% selectivity towards the desired amide. The catalytic performance in terms of turnover frequency per mole of iron was achieved with the catalyst exhibiting the largest amount of Fe3+ species, optimum acidity and a relatively low Brønsted to Lewis acid site ratio.

MRI view of electrochemical process


MRI of electrochemical cell with FeCl2 water solution under different applied voltage. Images were obtained on Bruker 400 WB Avance III spectrometer.

Glass Phys Chem, 2017, 43, 70–74

V.V. Tomaev, A.S. Mazur, A.S. Grevtsev

“A study of the process of thermal oxidation of lead selenide by the NMR and XRD methods”

Glass Phys. Chem., 2017, 43, 70–74
DOI:10.1134/S1087659617010163

Studies of the process of oxidation of powder samples of lead selenide in a dry air atmosphere have been performed. As shown by the methods of X-ray diffraction and scanning electron microscopy, the process of thermal treatment of samples resulted in the formation of the PbSeO3 phase, aside from the initial PbSe phase. Studies by the method of nuclear magnetic response (NMR) allowed revealing the dynamics of changes in the spectrum under the changed thermal treatment conditions.

 

Eur. J. Mineral., 2016, 28, 931–941

T.L. Panikorovskii, S.V. Krivovichev, E.V. Galuskin, V.V. Shilovskikh, A.S. Mazur, A.V. Bazai

“Si-deficient, OH-substituted, boron-bearing vesuvianite from Sakha-Yakutia, Russia: a combined single-crystal, 1H MAS-NMR and IR spectroscopic study”

Eur. J. Mineral., 2016, 28, 931–941
DOI:10.1127/ejm/2016/0028-2570

source: http://www.ingentaconnect.com/content/schweiz/ejm/2016/00000028/00000005/art00006

Single crystals of Si-deficient vesuvianite with significant degree of hydrogarnet-type (SiO4)4−–(O4 H4)4− substitution occur as epitactic overgrowth on the surface of large wiluite crystals from the Wiluy River, Sakha–Yakutia, Russia. Electron-microprobe analysis revealed considerable Si-deficiency, Si ranging from 16.30 to 17.50 apfu. The crystal structure of the mineral has been refined in the P4/nnc space group, a = 15.5876(4), b = 11.8021(5) Å to R 1 = 0.028 for 1533 unique observed reflections. The refinement of the site-occupancy factors confirmed significant vacancy at the Z(1) and Z(2) sites (27% and 10%, respectively), with associated increase of the Z(1)–O and Z(2)–O bond lengths to 1.697 and 1.655 Å, respectively. The increased size of the Z(1) tetrahedra results in the compression of the X(1) polyhedra, while the expansion of the Z(2) tetrahedra is compensated by the compression of the X(4) polyhedra. As a result, the significant degree of the hydrogarnet-type substitutions does not have an essential influence upon the unit-cell parameters compared to the usual defect-free vesuvianite. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) curves indicated two steps of the weight loss in the temperature ranges of 600–900°C (2.08 wt%) and 1014°C (2.22 wt%). The total weight loss is estimated as 4.30%, which is in good agreement with the total content of OH estimated as 13.72 apfu. The 1H solid state MAS-NMR demonstrates the presence of a strong additional line at 3.38 ppm compared to the usual vesuvianite, which is explained by the existence of the additional H(3) site. The infrared spectrum in the OH-stretching vibration region shows the additional (B′) absorption band at 3618 cm−1 typical for a hydrogarnet-type substitution.

 

New J. Chem., 2016, 40, 10028-10040

A.V. Artem’ev, E.P. Doronina, M.I. Rakhmanova, A.O. Sutyrina, I.Yu. Bagryanskaya, P.M. Tolstoy, A.L. Gushchin, A.S. Mazur, N.K. Gusarova, B.A. Trofimov

“Luminescent CuI thiocyanate complexes based on tris(2-pyridyl)phosphine and its oxide: from mono-, di- and trinuclear species to coordination polymer”

New J. Chem., 2016, 40, 10028-10040
DOI:10.1039/C6NJ02087A

43_artemev

Tris(2-pyridyl)phosphine oxide reacts with CuSCN to form a variety of luminescent complexes, depending on the specified metal-to-ligand ratio and the solvent used, viz. mononuclear [Cu(N,N′,N′′-Py3P=O)(NCS)], dinuclear (N,N′-Py3P=O)Cu(SCN NCS)Cu[(N,N′-Py3P=O)], their co-crystal (2 : 1, correspondingly) and trinuclear {Cu(NCS)[SCNCu(N,N′,N′′-Py3P=O)]2}. In the solid state, these complexes feature red-orange emission upon UV photoexcitation. The reaction of tris(2-pyridyl)phosphine with CuSCN quantitatively produces an almost insoluble coordination polymer, [Cu(Py3P)NCS]n, which exhibits bright green emission. The synthesized compounds are the first members of the hitherto unknown family of Cu(I) thiocyanate complexes supported by tripodal ligands.

 

Glass Physics and Chemistry, 2016, 42(3), 230–237

A.A. Osipov, V.E. Eremyashev, A.S. Mazur, P.M. Tolstoi, L.M. Osipova

“Coordination State of Aluminum and Boron in Barium Aluminoborate Glass”

Glass Physics and Chemistry, 2016, 42(3), 230–237
DOI:10.1134/S1087659616030111

This paper considers the coordination state of boron and aluminum ions in barium aluminoborate glass with a constant ratio of BaO : B2O3 = 0.5 and a variable ratio of Al2O3 : BaO = 0–3. The dependence of the concentrations of boron and aluminum atoms with a variable coordination number on the Al2O3 content was estimated by IR, 11B and 27Al NMR spectroscopy. The nonlinear nature of the obtained dependences was attributed to variations in the aluminum oxide properties. At a content of less than 30 mol % Al2O3 serves primarily as a network former, while an increase in the Al2O3 concentration results in its higher modifying role in the studied glass.

Spinus 2015, A. S. Mazur


Anton Mazur has presented a report “Application of solid state NMR for studying the properties of magnetically ordered materials” at the conference Spinus 2015. Video report you can find here (language: Ru)