Русский

Method of obtaining measurement data

Dear users,

The link to the data store changed on 09/16/2024.

Information about the new address of the CMR data storage was sent to the heads of existing projects.

Up-to-date information about the address of the data storage is posted on our bulletin board located above the table with samples and at the entrance to room 1062 of the CMR.

We do not publish this information here at the request of the IT staff.

CMR working again

The air conditioning system started working.

Acceptance of applications has been resumed from 07/19/2024.

New sample changer

The Bruker Avance III 500 MHz instrument is now equipped with an automatic sample changer. The capacity of the new system is 24 samples. The new equipment will significantly optimize the use of the instrument time of one of the most demanded instruments in the Center for Magnetic Resonance.

The new instrument in the CMR

A new NMR spectrometer – Bruker AVANCE 500 NEO was launch at the Center for Magnetic Resonance. The AVANCE NEO represents the next generation in the AVANCE series product line. The AVANCE NEO is based on a ‘transceive’ principle, meaning each NMR channel has both transmit and receive capabilities. So each channel is its own independent spectrometer with the full RF generation, transmission and receive infrastructure.

This architecture provides the greatest flexibility in terms of instrument configuration and multi-channel operation. Multi-receive experiments are easily implemented with this new approach.

The spectrometer will soon be equipped with a broadband
CryoProbe™ Prodigy (BBO), which will reduce the time of long heteronuclear NMR experiments by several times and significantly
reduce the waiting time for spectral data by users.

The cryomagnet of the spectrometer is equipped with an air suspension system that reduces vibrations and, as a result, significantly improves spectrum quality.

The spectrometer operates under the latest version of TopSpin 4 software, which implements the latest advances in spectral data processing and analysis.

CMR operation under constraints

Dear customers, the Center for Magnetic Resonance, like other departments of St. Petersburg State University, is gradually getting out of the restrictions associated with the spread of the new coronavirus infection (COVID-19). You can obtain up-to-date information on the restrictions still in force by referring to the corresponding orders published in the documents section (in Russian) on the SPbU website.

New external address of the CMR ftp server

The external IP address of the CMR ftp server was changed.

New address: 185.148.210.65

(Other parameters remained unchanged)

Inorg. Chem., 2018, 57, 3420-3433

A. S. Mikherdov , A. S. Novikov , M. A. Kinzhalov , V. P. Boyarskiy, G. L. Starova, A. Yu. Ivanov, V. Yu. Kukushkin

“Halides Held by Bifurcated Chalcogen-Hydrogen Bonds. Effect of µ(S,N-H)Cl Contacts on Dimerization of Cl(carbene)PdII Species ”

Inorg. Chem. , 2018, 57(6), 3420-3433
DOI:10.1021/acs.inorgchem.8b00190

 source: https://pubs.acs.org/doi/10.1021/acs.inorgchem.8b00190

The reaction of cis-[PdCl2(CNCy)2] (1) with thiazol-2-amines (2–10) leads to the C,N-chelated diaminocarbene-like complexes [PdCl{C(N(H)4,5-R2-thiazol-2-yl)NHCy}(CNCy)] (11–14; 82–91%) in the case of 4,5-R2-thiazol-2-amines (R, R = H, H (2), Me, Me (3), −(CH2)4– (4)) and benzothiazol-2-amine (5) or gives the diaminocarbene species cis-[PdCl2{C(N(H)Cy)N(H)4-R-thiazol-2-yl}(CNCy)] (15–19; 73–93%) for the reaction with 4-aryl-substituted thiazol-2-amines (R = Ph (6), 4-MeC6H4 (7), 4-FC6H4 (8), 4-ClC6H4 (9), 3,4-F2C6H3 (10)). Inspection of the single-crystal X-ray diffraction data for 15–17 and 19 suggests that the structures of all these species exhibit previously unrecognized bifurcated chalcogen–hydrogen bonding μ(S,N–H)Cl and also PdII···PdII metallophilic interactions. These noncovalent interactions collectively connect two symmetrically located molecules of 15–17 and 19, resulting in their solid-state dimerization. The existence of the μ(S,N–H)Cl system and its strength (6–9 kcal/mol) were additionally verified/estimated by a Hirshfeld surface analysis and DFT calculations combined with a topological analysis of the electron density distribution within the formalism of Bader’s theory (AIM method) and NBO analysis. The observed noncovalent interactions are jointly responsible for the dimerization of 15–19 not only in the solid phase but also in CHCl3 solutions, as predicted theoretically by DFT calculations and confirmed experimentally by FTIR, HRESI-MS, 1H NMR, and diffusion coefficient NMR measurements. Available CCDC data were processed under the new moiety angle, and the observed μ(S,E–H)Cl systems were classified accordingly to E (E = N, O, C) type atoms.

Inorganica Chimica Acta, 2018, 473, 133-144

A. V.Protas, E.A.Popova, O. V.Mikolaichuk, Y. B.Porozov, A. R.Mehtiev, I. Ott, G. V. Alekseev, N. A.Kasyanenko, R. E.Trifonov

“Synthesis, DNA and BSA binding of Pd(II) and Pt(II) complexes featuring tetrazolylacetic acids and their esters”

Inorganica Chimica Acta, 2018, 473, 133-144
DOI:10.1016/j.ica.2017.12.040

 source:https://www.sciencedirect.com/science/article/pii/S0020169317317127?via%3Dihub

Two series of palladium(II) and platinum(II) complexes featuring esters of tetrazol-1-yl and tetrazol-5-ylacetic acids {trans-[PdCl2L2] and trans-[PtCl2L2], L  =  5-methyl-1H-tetrazol-1-ylacetic acid and its ethyl, butyl, isobutyl esters (1–5); 2-R-2H-tetrazol-5-ylacetic acid and its ethyl esters, R = tBu, CH2CH2OH (6–10)} were synthesized and their binding to calf-thymus DNA (CT DNA) and bovine serum albumin (BSA) were studied by means of experimental (CD, UV, viscometry, fluorometric and electrophoretic techniques) and theoretical methods. According to the spectrophotometric data, the interaction of the metal complexes with CT DNA is observed. The significant increase of melting point of CT DNA in the presence of the metal complexes (ΔTm = 8–13 °C) indicates strong stabilization of the DNA helix. Electrophoretic studies demonstrate the ability of the metal complexes to interact with pBR322 plasmid DNA and to change its mobility. According to the data of the fluorescence quenching technique, binding with constants (Kbin) of Pd(II) complexes with BSA are in the range 0.83–4.12 × 105 L M−1. The molecular docking studies show the minor groove binding behavior of tetrazole-containing palladium(II) and platinum(II) complexes to DNA (ΔGbinding. −5.56 − −6.12 kcal/mol) and effective binding to BSA via the favored binding site Trp213 (ΔGbinding −7.2 − −7.56 kcal/mol). The complex trans-[PtCl2(2-tert-butyl-tetrazol-5-ylacetic acid)2] exhibited noticeable antiproliferative activity in two human cancer cell lines with IC50 values of 11.40 µM in HT-29 cells and 11.02 µM in MDA-MB-231 cell line.

Crystals, 2018, 8, 112

A. S. Mikherdov, A. S. Novikov, M. A. Kinzhalov, A. A. Zolotarev, V. P. Boyarskiy

“Intra-/Intermolecular Bifurcated Chalcogen Bonding in Crystal Structure of Thiazole/Thiadiazole Derived Binuclear (Diaminocarbene)PdII Complexes”

Crystals, 2018, 8(3), 112
DOI:10.3390/cryst8030112

 source: http://www.mdpi.com/2073-4352/8/3/112

The coupling of cis-[PdCl2(CNXyl)2] (Xyl = 2,6-Me2C6H3) with 4-phenylthiazol-2-amine in molar ratio 2:3 at RT in CH2Cl2 leads to binuclear (diaminocarbene)PdII complex 3c. The complex was characterized by HRESI+-MS, 1H NMR spectroscopy, and its structure was elucidated by single-crystal XRD. Inspection of the XRD data for 3c and for three relevant earlier obtained thiazole/thiadiazole derived binuclear diaminocarbene complexes (3a EYOVIZ; 3b: EYOWAS; 3d: EYOVOF) suggests that the structures of all these species exhibit intra-/intermolecular bifurcated chalcogen bonding (BCB). The obtained data indicate the presence of intramolecular S•••Cl chalcogen bonds in all of the structures, whereas varying of substituent in the 4th and 5th positions of the thiazaheterocyclic fragment leads to changes of the intermolecular chalcogen bonding type, viz. S•••π in 3a,b, S•••S in 3c, and S•••O in 3d. At the same time, the change of heterocyclic system (from 1,3-thiazole to 1,3,4-thiadiazole) does not affect the pattern of non-covalent interactions. Presence of such intermolecular chalcogen bonding leads to the formation of one-dimensional (1D) polymeric chains (for 3a,b), dimeric associates (for 3c), or the fixation of an acetone molecule in the hollow between two diaminocarbene complexes (for 3d) in the solid state. The Hirshfeld surface analysis for the studied X-ray structures estimated the contributions of intermolecular chalcogen bonds in crystal packing of 3a–d: S•••π (3a: 2.4%; 3b: 2.4%), S•••S (3c: less 1%), S•••O (3d: less 1%). The additionally performed DFT calculations, followed by the topological analysis of the electron density distribution within the framework of Bader’s theory (AIM method), confirm the presence of intra-/intermolecular BCB S•••Cl/S•••S in dimer of 3c taken as a model system (solid state geometry). The AIM analysis demonstrates the presence of appropriate bond critical points for these interactions and defines their strength from 0.9 to 2.8 kcal/mol indicating their attractive nature

April

Total in April 2877 service applications were carried out.
All together measured:

  • 2729 1H spectra
  • 421 13C spectra
  • 130 DEPT spectra
  • 69 COSY spectra
  • 53 NOESY spectra
  • 49 31P spectra
  • 115 19F spectra

323 applications were carried out.