Явление электронного парамагнитного резонанса (ЭПР) заключается в резонансном поглощении электромагнитного излучения в диапазоне радиочастот веществами, помещенными в постоянное магнитное поле, и обусловленное квантовыми переходами между энергетическими подуровнями, связанными с наличием магнитного момента у электронных систем. Также ЭПР называют электронный спиновый резонанс (ЭСР), магнитный спиновый резонанс (МСР) и, среди специалистов, работающих с магнитно-упорядоченными системами, ферромагнитный резонанс (ФМР).
Явление ЭПР можно наблюдать на:
- атомах и молекулах, которые на своих орбиталях имеют нечетное количество электронов — H, N, NO2 и др.;
- химических элементах в различных зарядовых состояниях, у которых не все электроны на внешних орбиталях участвуют в образовании химической связи – прежде всего, это d- и f-элементы;
- свободных радикалах – метильный радикал, нитроксильные радикалы и др.;
- электронных и дырочных дефектах, стабилизирующихся в матрице веществ, – O—, O2—, CO2—, CO23-, CO3—, CO33- и многих других;
- молекулах с четным числом электронов, парамагнетизм которых обусловлен квантовыми явлениями распределения электронов по молекулярным орбиталям – О2;
- наночастицах-суперпарамагнетиках, образующихся при растворении или в сплавах, обладающих коллективным магнитным моментом, которые ведут себя подобно электронному газу.
Структура и свойства спектров ЭПР
Поведение магнитных моментов в магнитном поле зависит от различных взаимодействий неспаренных электронов, как между собой, так и с ближайшим окружением. Важнейшими из них считаются спин-спиновые и спин-орбитальные взаимодействия, взаимодействия между неспаренными электронами и ядрами, на которых они локализуются (сверхтонкие взаимодействия), взаимодействия с электростатическим потенциалом, создаваемым ионами ближайшего окружения в месте локализации неспаренных электронов и другие. Большинство перечисленных взаимодействий приводит к закономерному расщеплению линий. В общем случае спектр ЭПР парамагнитного центра является многокомпонентным. Представление об иерархии основных расщеплений можно получить из следующей схемы (определения используемых обозначений даны ниже):
Основными характеристиками ЭПР-спектра парамагнитного центра (ПЦ) являются:
- количество линий в спектре ЭПР конкретного ПЦ и их относительные интенсивности.
- Тонкая структура (ТС). Число линий ТС определяется величиной спина S ПЦ и локальной симметрией электростатического поля ближайшего окружения, а относительные интегральные интенсивности определяются квантовым числом mS (величина проекции спина на направление магнитного поля). В кристаллах расстояние между линиями ТС зависит от величины потенциала кристаллического поля и его симметрии.
- Сверхтонкая структура (СТС). Линии СТС от конкретного изотопа имеют приблизительно одинаковую интегральную интенсивность и практически эквидистантны. Если ядро ПЦ имеет несколько изотопов, то каждый изотоп дает свой набор линий СТС. Их количество определяется спином I ядра изотопа, около которого локализован неспаренный электрон. Относительные интенсивности линий СТС от различных изотопов ПЦ пропорциональны естественной распространенности этих изотопов в образце, а расстояние между линиями СТС зависит от величины магнитного момента ядра конкретного изотопа, константы сверхтонкого взаимодействия и степени делокализации неспаренных электронов на этом ядре.
- Суперсверхтонкая структура (ССТС). Число линий ССТС зависит от числа nл эквивалентных лигандов, с которыми взаимодействует неспаренная спиновая плотность и величины ядерного спина Iл их изотопов. Характерным признаком таких линий также является распределение их интегральных интенсивностей, которое в случае Iл = 1/2 подчиняется закону биномиального распределения с показателем степени nл. Расстояние между линиями ССТС зависит от величины магнитного момента ядер, константы сверхтонкого взаимодействия и степени локализации неспаренных электронов на этих ядрах.
- спектроскопические характеристики линии.
Особенностью спектров ЭПР является форма их записи. По многим причинам спектр ЭПР записывается не в виде линий поглощения, а как производная от этих линий. Поэтому, в ЭПР-спектроскопии принята несколько иная, отличная от общепринятой, терминология для обозначения параметров линий.
Линия ЭПР поглощения и ее первая производная: 1- гауссова форма; 2- лоренцева форма.
- Истинная линия – δ-функция, но с учетом релаксационных процессов имеет форму Лоренца;
- Линия – отражает вероятность процесса резонансного поглощения электромагнитного излучения ПЦ и определяется процессами, в которых участвуют спины;
- Форма линии – отражает закон распределения вероятности резонансных переходов. Поскольку, в первом приближении, отклонения от резонансных условий носят случайный характер, форма линий в магниторазбавленных матрицах имеет гауссову форму. Наличие дополнительно обменных спин-спиновых взаимодействий приводит к лоренцевой форме линии. В общем случае форма линии описывается смешанным законом;
- Ширина линии – ΔВmax – cоответствует расстоянию по полю между экстремумами на кривой линии;
- Амплитуда линии – Imax – соответствует по шкале амплитуды сигнала расстоянию между экстремумами на кривой линии;
- Интенсивность – I0 – значение вероятности в точке МАХ на кривой поглощения, вычисляется при интегрировании по контуру линии записи;
- Интегральная интенсивность – площадь под кривой поглощения, пропорциональна количеству парамагнитных центров в образце и вычисляется путем двойного интегрирования линии записи, сначала по контуру, затем по полю;
- Положение линии – В0 – соответствует пересечению контура производной dI/dB с нулевой линией (линией тренда);
- положение линий ЭПР в спектре.
Согласно выражению ħν = gβB, определяющему условия резонансного поглощения для ПЦ со спином S = 1/2, положение линии электронного парамагнитного резонанса можно охарактеризовать значением g-фактора (аналог фактора спектроскопического расщепления Ланде). Величина g-фактора определяется как отношение частоты ν, на которой проводилось измерение спектра к величине магнитной индукции В0, при которой наблюдался максимум эффекта. Следует отметить, что для парамагнитных центров g-фактор характеризует ПЦ как целое, т.е. не отдельную линию в спектре ЭПР, а всю совокупность линий, обусловленных исследуемым ПЦ.
В ЭПР экспериментах фиксируется энергия электромагнитного кванта, то есть частота ν, а магнитное поле В может изменяться в широких пределах. Выделяются некоторые, довольно узкие, диапазоны СВЧ-частот, в которых работают спектрометры. Каждый диапазон имеет свое обозначение:
Диапазон (BAND) |
Частота ν, МГц (ГГц) |
Длина волны λ, мм |
Магнитная индукция В0, при которой наблюдается сигнал ЭПР свободного электрона с g = 2.0023, Гс (Т) |
---|---|---|---|
L | 1000 (1) | 300 | 300 (0.03) |
S | 3000 (3) | 100 | 1100 (0.11) |
X | 9500 (9.5) | 32 | 3300 (0.33) |
K | 24000 (24) | 12.5 | 8600 (0.86) |
Q | 35000 (35) | 8.5 | 12500 (1.25) |
W | 95000 (95) | 3.2 | 34000 (3.40) |
— | 190000 (190) | 1.6 | 68000 (6.80) |
Наибольшее распространение получили спектрометры X- и Q-диапазонов. Магнитное поле в таких ЭПР спектрометрах создается резистивными электромагнитами. В спектрометрах с большей энергией кванта магнитное поле создается уже на основе сверхпроводящих магнитов. В настоящее время в РЦ МРМИ ЭПР-оборудование представляет собой многофункциональный спектрометр Х-диапазона с резистивным магнитом, позволяющим проводить эксперименты в магнитных полях с индукцией от -11000 Г до 11000 Г.