Archive for January 31, 2018


Dalton Transactions, 2017, 46, 12425-12429

A.V. Artem’ev, I.Yu. Bagryanskaya, E.P. Doronina, P.M. Tolstoy, A.L. Gushchin, M.I. Rakhmanova, A.Yu. Ivanove, A.O. Suturina

“A new family of clusters containing a silver-centered tetracapped [Ag@Ag4(μ3-P)4] tetrahedron, inscribed within a N12 icosahedron”

Dalton Transactions, 2017, 46, 12425-12429.
DOI: 10.1039/C7DT02597A


An unprecedented silver-centered P-tetracapped [Ag@Ag4(μ3-P)4] tetrahedron inscribed within a N12 icosahedral cage has been discovered in the novel family of luminescent clusters. The latter are easily self-assembled by reacting AgI salts with tris(2-pyridyl)phosphine (Py3P).

Applied and Environmental Soil Science, 2018, 1026237

E.V. Abakumov, O.A. Rodina, A.K. Eskov

“Humification and Humic Acid Composition of Suspended
Soil in Oligotrophous Environments in South Vietnam”

Applied and Environmental Soil Science, 2018, Article ID 1026237.
DOI: 10.1155/2018/1026237


Humification is considered to be a global process that is implemented in soils and organic sediments and also in natural water and air. The term “suspended soils” has become increasingly common in recent years. Suspended soils are defined as the part of the organic matter that has not undergone the full decomposition process and has not turned into the humus of terrestrial soils. Suspended soils were shown to contain higher total nitrogen, phosphorus, and potassium contents than the forest soil, but the moisture content in suspended soils was significantly lower. Our study of the structural composition of humic substances in suspended soils was conducted with an aim of evaluating the humification rates and structural composition of humic acids in the suspended soil in tropical forests of South Vietnam. Soil samples from three selected areas were investigated: the soil under phorophytes (mineral soil presented by samples of topsoil of the typical dry savanna landscape) and two soils from epiphytous formations. Samples were collected from savanna-type sparse communities, located on oligotrophous plains in Phú Quốc Island (South Vietnam) in 2015. General properties of the soil and the elemental composition of suspended soils were determined, and the humic substance chemical composition was evaluated using solid state 13C-NMR. Data obtained showed that the pH of the soils under phorophytes was higher than in the suspended soils; basal respiration did not tend to change indices between soils under phorophytes and suspended soils, but the suspended soil was less enriched by nitrogen than the soil under phorophytes. This can be related to the total amount of organic matter exposed to humification in various soils and to the presence of an essential portion of mineral particles in the soil under phorophytes. Data on elemental composition of the humic acids (HAs) indicated that one method of humification is implemented in all three soils that were investigated. The humic acids of the phorophyte soil showed the same content of aromatic fraction as the suspended soil. The most comparable soil type in terms of humic substance composition is Cambisols from humid forests of subboreal and subtropical zones. The humification process implemented in suspended soils showed the absence of mineral compounds or mineral fine earth, which indicated that humification in conditions of pure organic substrates can result in formation of deep humified organic matter, as shown by humic acids with an essential aromatic fraction content.

Bioconjugate Chem., 2017, 28, 426–437

A. I. Solomatina, P.S. Chelushkin, D.V. Krupenya, I.S. Podkorytov∥, T.O. Artamonova, V.V. Sizov, A.S. Melnikov, V.V. Gurzhiy, E.I. Koshel, V.I. Shcheslavskiy, S.P. Tunik

“Coordination to Imidazole Ring Switches on Phosphorescence of Platinum Cyclometalated Complexes: The Route to Selective Labeling of Peptides and Proteins via Histidine Residues”

Bioconjugate Chem., 2017, 28 (2), 426–437.
DOI: 10.1021/acs.bioconjchem.6b00598


In this study, we have shown that substitution of chloride ligand for imidazole (Im) ring in the cyclometalated platinum complex Pt(phpy)(PPh3)Cl (1; phpy, 2-phenylpyridine; PPh3, triphenylphosphine), which is nonemissive in solution, switches on phosphorescence of the resulting compound. Crystallographic and nuclear magnetic resonance (NMR) spectroscopic studies of the substitution product showed that the luminescence ignition is a result of Im coordination to give the [Pt(phpy)(Im)(PPh3)]Cl complex. The other imidazole-containing biomolecules, such as histidine and histidine-containing peptides and proteins, also trigger luminescence of the substitution products. The complex 1 proved to be highly selective toward the imidazole ring coordination that allows site-specific labeling of peptides and proteins with 1 using the route, which is orthogonal to the common bioconjugation schemes via lysine, aspartic and glutamic acids, or cysteine and does not require any preliminary modification of a biomolecule. The utility of this approach was demonstrated on (i) site-specific modification of the ubiquitin, a small protein that contains only one His residue in its sequence, and (ii) preparation of nonaggregated HSA-based Pt phosphorescent probe. The latter particles easily internalize into the live HeLa cells and display a high potential for live-cell phosphorescence lifetime imaging (PLIM) as well as for advanced correlation PLIM and FLIM experiments.

Colloids and Surfaces A, 2018, 538, 45–55

A.S. Konevaa, E. Ritter, Y.A. Anufrikova, A.A. Lezova, A.O. Klestovaa, N.A. Smirnova, E.A. Safonova, I. Smirnova

“Mixed aqueous solutions of nonionic surfactants Brij 35/Triton X-100: Micellar properties, solutes’ partitioning from micellar liquid chromatography and modelling with COSMOmic”

Colloids and Surfaces A, 2018, 538, 45–55.
DOI: 10.1016/j.colsurfa.2017.10.044


Aqueous solutions of nonionic surfactants are of interest for bioprocesses, particularly as solubilizing agents for hydrophobic substances. To design such processes, the data on partition coefficients of solutes between micelles and their aqueous surrounding (Pmw) are of high value. An extended understanding of the partition behavior can be achieved from the structural information such as the micelle size and micelles composition.
In this work, mixtures of nonionic surfactants Triton X-100 and Brij 35 were under study. The data on critical micelle concentrations showed partly non-ideal behavior of the solutions. The compositions of mixed micelles at different molar Brij 35/Triton X-100 ratios in the surfactant mixture were estimated from the data on selfdiffusion coefficients (NMR diffusometry) and were calculated within the regular solution approach and predicted by Motomura’s model. The change of the mixed micelle composition in dependence on the total surfactant concentration was observed. It has been found, that the average value of the mixed micelles radii is∼4 nm. Whereas, the polydispersity indexes and the aggregation numbers increased with Triton X-100 fraction. Moreover, the Pmw values of different non-dissociated solutes (phenyl derivatives with various functional groups) were determined by means of micellar liquid chromatography (MLC) and were predicted using the thermodynamic model COSMOmic, an extension of COSMO-RS. In general, it has been proved that COSMOmic is able to predict Pmw in the mixed micellar system formed by nonionic surfactants. The obtained data show the possibility of modulating the partition behavior of solutes using the mixtures of nonionic surfactants. Apart from the hydrophobicity, the «surfactants – solute» specific interactions play an important role in the partition behavior of the investigated systems.

Tetrahedron, 2017, 73(31), 4663-4670

P.A. Sakharov, N.V. Rostovskii, A.F. Khlebnikov, M.S. Novikov

“Annulation of five-membered cyclic enols with 3-aryl-2H-azirines: Catalytic versus non-catalytic cycloaddition”

Tetrahedron, 2017, 73(31), 4663-4670.
DOI: 10.1016/j.tet.2017.06.037


A copper(I)-NHC-catalyzed annulation of 5-membered cyclic enols of furan, thiophene and indene family with 3-aryl-2H-azirines has been developed to provide a rapid access to furo[3,4-b]pyrrole, thieno[3,4-b]pyrrole, indeno[1,2-b]pyrrole derivatives. The reaction proceeds via a copper-initiated N-C2 azirine bond cleavage with the retention of the C=N double bond in the annulation product. The reaction of tetronic acids with 3-aryl-2H-azirines can also proceed under catalyst-free conditions, through a double addition of the enol to the azirine, but this route provides poor yields of the annulation products. This is the first example of the N-C2 bond cleavage in 2-unsubstituted 2H-azirines in the absence of a transition metal catalyst.

Land Degrad Dev., 2017, 1–10

E. Abakumov, E. Maksimova, A. Tsibart

“Assessment of postfire soils degradation dynamics: Stability and molecular composition of humic acids with use of spectroscopy methods”

Land Degrad Dev., 2017, 1–10.
DOI: 10.1002/ldr.2872


The effect of wildfires on the soils of the south taiga and forest-steppe environments of Central Russia (Histic Spodosols and Eutric Fluvic Arenosols) was investigated in terms of the content and quality of humic acids (HAs) using instrumental spectroscopic methods (solid-state carbon-13 nuclear magnetic resonance and electron spin resonance). The bulk elemental composition of HAs was not essentially altered in postfire soils; however, the organic matter of fire-affected superficial soil layers was characterized by changes in the structural composition and biochemical activity levels. Solid-state carbon-13 nuclear magnetic resonance spectroscopy showed that there is an intensive increase in aromatic compounds in HA molecules in soil from both the south taiga and forest-steppe environments. There is a pronounced and statistically significant decline of aliphatic chain content in response to exposure to fire. The free radicals content and the degree of molecular stabilization assessed with electron spin resonance showed an essential alteration of the HAs, expressed in the increase in the radical’s portion, in postfire soils compared with that found in soils not exposed to fire. It was also shown that the accumulation of aromatic compounds indicates only apparent stabilization of HAs due to the loss of periphery alkylic carbon species, which was confirmed by destabilization of the molecules as illustrated by the increase of free radicals.


Total in December 2367 service applications were carried out.
All together measured:

  • 2160 1H spectra
  • 371 13C spectra
  • 96 DEPT spectra
  • 68 COSY spectra
  • 17 NOESY spectra
  • 78 31P spectra
  • 127 19F spectra

228 applications were carried out.

NewJ.Chem., 2017, 41, 6840

D.S. Bolotin, M.Ya. Demakova, A.A. Legin, V.V. Suslonov, A.A. Nazarov, M.A. Jakupec, B.K. Kepplerb, V.Yu. Kukushkin

“Amidoxime platinum(II) complexes: pH-dependent highly selective generation and cytotoxic activity”

NewJ.Chem., 2017, 41, 6840
DOI: 10.1039/c7nj00982h


The reaction of cis-[PtCl2(Me2[S with combining low line]O)2] with 1 equiv. of each of the amidoximes RC(NH2)[double bond, length as m-dash]NOH in neutral media in MeOH results in the formation of complexes cis-[PtCl2{RC(NH2)[double bond, length as m-dash][N with combining low line]OH}(Me2[S with combining low line]O)] (5 examples; 83–98% isolated yields). In the presence of 2 equiv. of NaOH in MeOH solution, the reaction of cis-[PtCl2(Me2[S with combining low line]O)2] with 1 equiv. of each of the amidoximes RC(NH2)[double bond, length as m-dash]NOH leads to [Pt{RC([N with combining low line]H)[double bond, length as m-dash]N[O with combining low line]}(Me2[S with combining low line]O)2] (7 examples; 74–95% isolated yields). All new complexes were characterized by C, H, and N elemental analyses, HRESI+-MS, IR, 1H, 13C{1H}, and CP-MAS TOSS 13C{1H} NMR spectroscopies, and additionally by single-crystal XRD (for seven species). The cytotoxic potency of six compounds was determined in the human cancer cell lines CH1/PA-1, A549, SK-BR-3, and SW480. Generally, the second class of complexes containing chelating amidoximato ligands shows much higher cytotoxicity than the non-chelate amidoxime analogs, despite the lack of easily exchangeable chlorido ligands. Especially, the complex [Pt(p-CF3C6H4C([N with combining low line]H)[double bond, length as m-dash]N[O with combining low line])(Me2[S with combining low line]O)2] displays a remarkable activity in the inherently cisplatin resistant SW480 cell line (0.51 μM vs. 3.3 μM).