Archive for 27.12.2017

Organometallics, 2017, 36, 3974–3980

M. A. Kinzhalov , A. S. Legkodukh, T. B. Anisimova, A. S. Novikov, V. V. Suslonov, K. V. Luzyanin , V. Yu. Kukushkin

“Tetrazol-5-ylidene Gold(III) Complexes frоm Sequential [2 + 3] Cycloaddition of Azide to Metal-Bound Isocyanides and N4 Alkylation”

Organometallics, 2017, 36, 3974–3980
DOI: 10.1021/acs.organomet.7b00591

source: http://pubs.acs.org/doi/10.1021/acs.organomet.7b00591

The reaction between equimolar amounts of the isocyanide complexes [AuCl3(CNR)] [R = 2,6-Me2C6H3 (Xyl), 1a; 2,4,6-Me3C6H2 (Mes), 1b; Cy, 1c; t-Bu, 1d] and tetrabutylammonium azide (2) proceeds in CH2Cl2 at room temperature for ∼10 min to furnish the gold(III) tetrazolates [n-Bu4N][AuCl3(CN4R)] (3a–d), which were obtained in 89–95% yields after purification. Subsequent reaction between equimolar amounts of 3a–d and methyl trifluoromethanesulfonate (MeOTf) proceeds in CH2Cl2 at −70 °C for ∼30 min to give the corresponding gold(III) complexes [AuCl3(CaN(Me)N2NbR)]a–b (5a–d) bearing 1,4-disubstituted tetrazol-5-ylidene ligands (69–75%). Complexes 3a–d were obtained as pale-yellow solids and characterized by elemental analyses (C, H, N), HRESI–-MS, FTIR, and 1H and 13C{1H} NMR spectroscopies. Complexes 5a–d were obtained as colorless solids and characterized by elemental analyses (C, H, N), HRESI+-MS, and 1D (1H and 13C{1H}) and 2D (1H,13C-HMBC) NMR spectroscopies. In addition, the structures of 3a, 3b, 3c, and 5a were established by single-crystal X-ray diffraction. Analysis of the Wiberg bond indices (WI) for gas phase-optimized model structures of 3a–c and 5a computed using the natural bond orbital (NBO) partitioning scheme disclosed a higher degree of electron density delocalization in the CN4 moiety of carbene 5a when compared to tetrazolate 3a–c. Results of DFT calculations for a model system reveal that the mechanism for the cycloaddition of an azide to the isocyanide ligand in [AuCl3(CNMe)] is stepwise and involves nucleophilic attack of N3– on the N atom of CNMe followed by ring closure. The addition is both kinetically and thermodynamically favorable and occurs via the formation of an acyclic NNNCN intermediate, whereas the cyclization is the rate-determining step.


Поздравляем специалиста нашего ресурсного центра Артема Сергеевича Гревцева с успешной защитой кандидатской диссертации “Полиольный синтез селеноиндатов-галлатов меди в микроволновом поле”. Желаем ему дальнейших творческих успехов!


В Ноябре выполнено 2286 заявок на сервисные измерения.


  • 2169 спектр 1H
  • 374 спектра 13C
  • 119 спектров DEPT
  • 53 спектров COSY
  • 15 спектра NOESY
  • 54 спектра 31Р
  • 168 спектров 19F

Выполнено 231 заявок на исследовательскую работу.

J. Org. Chem., 2017, 82, 959–975

A.S. Filatov, N.A. Knyazev, A.P. Molchanov, T.L. Panikorovsky, R.R. Kostikov, A.G. Larina, V.M. Boitsov, A.V. Stepakov

“Synthesis of Functionalized 3-Spiro[cyclopropa[a]pyrrolizine]- and 3-Spiro[3-azabicyclo[3.1.0]hexane]oxindoles from Cyclopropenes and Azomethine Ylides via [3 + 2]-Cycloaddition”

J. Org. Chem., 2017, 82 (2), 959–975
DOI: 10.1021/acs.joc.6b02505

source: http://pubs.acs.org/doi/10.1021/acs.joc.6b02505

3-Spiro [cyclopropa [a]pyrrolizine]- and 3-spiro [3-azabicyclo [3.1.0] hexane] oxindoles were prepared in moderate to high yields via one-pot three-component reactions using substituted isatins, α-amino acids, and cyclopropenes. The key step is an intramolecular [3 + 2]-cycloaddition reaction of an in situ generated azomethine ylide onto a cyclopropene. Both N-substituted and N-unsubstituted α-amino acids, dipeptide Gly-Gly, and also benzylamine were used as the amine component for the azomethine ylide generation. The anticancer activity of some of the obtained compounds against human leukemia K562 cell line was evaluated by flow cytometry in vitro.


Михаил Вовк проводит экскурсию-лекцию о магнитно-резонансных методах исследования и возможностях реализуемых на современном оборудовании для подростающего поколения физиков.